logo

Against Monopoly

defending the right to innovate

Monopoly corrupts. Absolute monopoly corrupts absolutely.





Copyright Notice: We don't think much of copyright, so you can do what you want with the content on this blog. Of course we are hungry for publicity, so we would be pleased if you avoided plagiarism and gave us credit for what we have written. We encourage you not to impose copyright restrictions on your "derivative" works, but we won't try to stop you. For the legally or statist minded, you can consider yourself subject to a Creative Commons Attribution License.


back

Claim Jumping

In the last post we proposed claimless patenting as an alternative to today's system of allocation. Let's fill in some details of how this could be done.

Under this alternative system, a patent filing consists of a specification, which must contain at least a description of a working model implementation of the purported invention, clear enough so that any person of ordinary skill in the art can construct such a working model in a straightforward fashion. Rather than employ undefinable terms like "undue experimentation", straightforward will be defined below in terms of a Hamming distance, such that the worse the description is, the more likely the patent is to be found invalid.

Unlike today's system, which can't decide if an idea or a method is the patented object, in the claimless system it is the method that is owned, NOT the idea. The ideal specification is a working example (for code), or an actual set of instructions on how to make the supposed invention (for mechanical or electrical objects), or practice the supposedly inventive method. In the case of a software patent, since the working model is purely digital, there is no reason not to require that a working model - that is, actual code that runs - be provided as part of the specification, since there's no storage problem with digital information. Where a physical object, like an instrument, is envisioned, the specification should provide enough information to assemble the instrument. When a chemical is described, instructions for how to purchase or synthesize and verify the compound in question are appropriate. It is the instructions that provide the basis for distance measurement from the prior art.

So far, except for the requirement of a working codebase for a software specification, this isn't too different from existing practice. Now the fun part begins: the specification must also contain the applicant's representation of the closest example in the prior art, specifically including all published art and all commercial or freely-available products, to the purported inventive description above. The applicants must also provide a proposed measure of the distance between the prior art example and their purported invention. In general, such a measure would be like the Hamming distance in digital logic, in that it will count distinctions between the prior art and the purported invention.

What constitutes a distinction? This is where there will still be expertise involved in prosecuting a patent. An infinite variety of distinctions can be made between any two objects. The applicants choose the level of hierarchy at which distinctions will be counted. If they choose tiny steps to maximize the distance between themselves and the prior art, accused methods or devices will be able to use the same tiny steps to maximize distinctions between themselves and the invention, thus avoiding infringement. If the applicants choose to emphasize only huge distinctions, their distance measure will be small. A successful prosecution finds a level of hierarchy that maximizes the uniqueness of the applicant's object while still forcing competitors to achieve substantial distinctions or improvement to avoid infringement.

The patent examiner then reviews the specification under the following rubric: Using the Hamming distance measure proposed by the applicant, if the examiner finds an example in the prior art that is closer to the purported invention than that provided by the applicants, the application is prima facie invalid and rejected. The applicants may respond by accepting the examiner's example. The application may then be granted. This provides the first bound on the patented invention.

Note that we have actually abandoned any use of the concepts of "obviousness" and "invention": the application just describes something that is different from what has gone before. It is irrelevant how "hard" someone else thinks it might be to come up with the object or method described; all we do is count a distance and allocate a space around where they are.

The same Hamming distance measure can be used to establish enablement, again encouraging precise description and setting bounds on the patent's scope. If a person of ordinary skill is given the task of reducing the patent to practice, the Hamming distance between what they actually construct and what is provided in the patent sets another upper bound on allowable description. Since obviousness is no longer an issue, the persons doing the work can be employees of the applicant reducing the application to practice, which is just fine for practicing corporations wishing to block copying of their work -- but not so fine for non-practicing entities, who must at least find someone to build what they purport to own before they can litigate.

If the Hamming distance from the specification to the actual practice is larger than the distance from the prior art to the spec, the patent is invalid. If the Hamming distance from the spec to the reduced-to-practice example is larger than the distance to the purported infringer, there is no infringement.

This procedure has the advantage that the effect of a given patent will in general fall during the term, as practices change and the distance from the patented description to current practice increases. That is, we are making NO distinction between improvements supposedly derived from the purported invention and other improvements: as the art becomes more capable, the patent disclosure becomes less relevant. Only truly novel inventions, for which a large distance is maintained for a long time, will support infringement claims many years after grant. Trivial improvements on existing practice (which the vast majority of today's patents are) will quickly become irrelevant, as the potential infringements differ more and more from the described invention.

Finally, because the breadth of a patent is limited by the prior art rather than bizarre legal theories about what a word means, and can only grow narrower with the passing of time, the concern that a patent will block important activities and impair rather than encourage innovation is greatly reduced. This may enable legislators and judges to abandon pointless distinctions about what the appropriate subject matter for a patent is. However, the importance of prior art should be emphasized, and therefore any subject matter where the accessible prior art is lacking - that is, where the majority of information is inaccessible due to e.g. copyright or secrecy restrictions -- should be considered inappropriate for patenting.

Well, that was all very profound, or at least profound-sounding, but I'm still acting like a mathematician, proving statements about the properties of an object without actually producing it. In the next post we'll take a crack at defining a Hamming distance for a real-life application, to gain some insight into the possibilities and problems of measuring the size of an idea.


Comments


Submit Comment

Blog Post

Name:

Email (optional):

Your Humanity:

Prove you are human by retyping the anti-spam code.
For example if the code is unodosthreefour,
type 1234 in the textbox below.

Anti-spam Code
UnoEightTwoNine:


Post



   

Most Recent Comments

A Texas Tale of Intellectual Property Litigation (A Watering Hole Patent Trolls) Aunque suena insignificante, los números son alarmantes y nos demuestran que no es tan mínimo como

James Boyle's new book with his congenial IP views free to download

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1

French firm has patents on using computers to choose medical treatment 1