CHALLENGES
In our archetypal example of the block building kids, we asserted a specific scale for counting an instruction. For example, "place two blocks parallel to one another, but separated by less than the length of the orthogonal blocks" was one instruction. How did we choose this scale? For example, I could instead choose to specify all the constituents of this action as instructions:
1. grab a block from the block box
2. place the block on the floor
3. orient the block to an arbitrary angle from true north
4. note that angle
5. grab a second block of the same length, width, and height from the block box
6. place the second block at the same arbitrary angle from true north to within +/- 15 degrees
...and so on. This is more like the set of instructions you might provide to a robot to undertake the block building task.
Now, note that the list of instructions becomes very long, but we see that we can still make an argument that only a few of them would be new instructions for the interpenetrating block building that was the topic of our "invention". Most of these instructions are the same as the instructions for the previous non-interprenetrating block building. So it seems plausible that, no matter how you structure the instruction list, there's a sort of conserved quantity that characterizes a new block building type.
Similarly, in the case of US 8,698,473 examined in the previous post, we could make the instruction set "grainier" by including e.g. the exact value of saturation current of the current source, the compliance (range of voltages over which the current source provides a fixed amount of current), the current carrying capacity of the wire you use to hook the current source up, and innumerable other technical details. It seems plausible that the same argument could be made that most of these instructions exist in the prior art, and only a few specific new combinations are associated with the "inventive" configuration of Kimura's Figure 1.
So in order to make claimless patenting work, we'd need to demonstrate that there's a reasonably consistent means of arriving at the difference between prior art instruction sets and the "new" one in each case. It seems very likely that the methods for defining new and old instructions will differ from one area of art to another. For example, if I want to patent a chemical compound that no one else has made before, in the claimless method what I patent is the method of synthesis and the method of analysis, because that's what is different from what came before. It seems likely we would need to have chemists think through what constitute elementary steps for synthesizing a new compound, and present the set of reasonable ways to count the steps and therefore the distance from an old synthesis to a new one. Don't ask me, I connect wires to things. The same remarks apply to mechanical engineering, metallurgy, signal processing, web software, and any other area of art. So to implement any claimless system would probably require an extensive and likely ongoing body of work by people with expertise in each area of art for which patents are allowed. Professors take note.
As we alluded to previously, the results of such a process are likely to produce a range of alternatives that can be chosen for a given patent application in a given area of art. Choosing one of the many alternatives will be a tradeoff of the distance from the prior art for the instant application, and the way of measuring distance to likely infringers. Because applicants will be required to demonstrate that their application is enabled, the distance measurement chosen will also be important for them to ensure that the enabled working example is closer to their patent application than the prior art is -- as the reader may recall, if this condition fails the patent is declared invalid. It's politically beneficial and probably practically beneficial to leave room for the ingenuity of the attorney as well as the inventor in the patent process.
BENEFITS
The claimless patent approach is based on instructions and methods. These are real and demonstrable objects. They define a person of ordinary skill for the relevant task, and can be verified by finding such people and showing that they can construct the required objects given the correct instructions. Assertions made by the applicant are testable, and will surely be tested in litigation. I don't patent a new chemical, I patent a method to make something new and verify that it is. If someone copies my method I can sue them. If they find their own synthesis, more different from mine than mine was from what went before, they do not infringe, even if it includes all the elements I used. The claimless system prevents copying -- benefiting from all the work I did without paying for it -- but it does not block progress, where you do just as much work and add just as much value. The claimless system meets the requirements of the US Constitution that it "promote the progress of science and the useful arts", which the existing patent system does not do.
The requirement that enablement be demonstrated to be close to the method described in an application blocks the useless disclosures that pollute the existing system. A defendant can pick up the application, hand it to a person of ordinary skill, and demonstrate that they get stuck, having first shown that the same type of instruction sets successfully enabled that person to produce prior art objects that worked. In the process they have also defined a person of ordinary skill in the relevant art, in today's system a completely nebulous concept that is never tested. The best way to file in the claimless system is to go build the invention and then grab the list of instructions used and file them, so that the applicant is armed with a clear demonstration of enablement from day one.
The claimless system is better suited to the complexity of the real world. In the existing system, it is essentially impossible to verify that a new product will not infringe on granted patents, because of the admitted ambiguity of the system of patent claims. In the claimless system, I just need to search for my instruction set, and count the differences between it and what I find -- a task admirably suited to the big-data world, as long as we have successfully defined the elementary steps for each field as noted above. Better still, potential infringement doesn't block me -- it just sets a higher standard for what I need to produce. In the claimless world, more patent applications will be filed, but each application will be much easier to prosecute, assert, and refute as appropriate.
Implementation
Some serious technical work is needed before the hard political lifting would even begin to create example rubrics for fields of art: elementary instruction sets and how to count them. The place to start is joint research of law school professors and their colleagues in technical areas, e.g. computer science or pharmaceutical development. Write if you're interested.